skip to main content


Search for: All records

Creators/Authors contains: "Singh, Narinder"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract There is growing demand in industrialized and developing countries to provide people and structures with effective earthquake protection. Here, we employ architectured material concepts and a bio-inspired approach to trail-blaze a new path to seismic isolation. We develop a novel seismic isolator whose unit cell is formed by linkages that replicate the bones of human limbs. Deformable tendons connect the limb members to a central post carrying the vertical load, which can slide against the bottom plate of the system. While the displacement capacity of the device depends only on the geometry of the limbs, its vibration period is tuned by dynamically stretching the tendons in the nonlinear stress–strain regime, so as to avoid resonance with seismic excitations. This biomimetic, sliding–stretching isolator can be scaled to seismically protect infrastructure, buildings, artworks and equipment with customized properties and sustainable materials. It does not require heavy industry or expensive materials and is easily assembled from metallic parts and 3D-printed components. 
    more » « less
  2. Abstract A-genome diploid wheats represent the earliest domesticated and cultivated wheat species in the Fertile Crescent and include the donor of the wheat A sub-genome. The A-genome species encompass the cultivated einkorn (Triticum monococcum L. subsp. monococcum), wild einkorn (T. monococcum L. subsp. aegilopoides (Link) Thell.), and Triticum urartu. We evaluated the collection of 930 accessions in the Wheat Genetics Resource Center (WGRC) using genotyping by sequencing and identified 13,860 curated single-nucleotide polymorphisms. Genomic analysis detected misclassified and genetically identical (>99%) accessions, with most of the identical accessions originating from the same or nearby locations. About 56% (n = 520) of the WGRC A-genome species collections were genetically identical, supporting the need for genomic characterization for effective curation and maintenance of these collections. Population structure analysis confirmed the morphology-based classifications of the accessions and reflected the species geographic distributions. We also showed that T. urartu is the closest A-genome diploid to the A-subgenome in common wheat (Triticum aestivum L.) through phylogenetic analysis. Population analysis within the wild einkorn group showed three genetically distinct clusters, which corresponded with wild einkorn races α, β, and γ described previously. The T. monococcum genome-wide FST scan identified candidate genomic regions harboring a domestication selection signature at the Non-brittle rachis 1 (Btr1) locus on the short arm of chromosome 3Am at ∼70 Mb. We established an A-genome core set (79 accessions) based on allelic diversity, geographical distribution, and available phenotypic data. The individual species core set maintained at least 79% of allelic variants in the A-genome collection and constituted a valuable genetic resource to improve wheat and domesticated einkorn in breeding programs. 
    more » « less
  3. Abstract

    The wheat wild relativeAegilops tauschiiwas previously used to transfer theLr42leaf rust resistance gene into bread wheat.Lr42confers resistance at both seedling and adult stages, and it is broadly effective against all leaf rust races tested to date.Lr42has been used extensively in the CIMMYT international wheat breeding program with resulting cultivars deployed in several countries. Here, using a bulked segregant RNA-Seq (BSR-Seq) mapping strategy, we identify three candidate genes forLr42. Overexpression of a nucleotide-binding site leucine-rich repeat (NLR) gene AET1Gv20040300 induces strong resistance to leaf rust in wheat and a mutation of the gene disrupted the resistance. TheLr42resistance allele is rare inAe. tauschiiand likely arose from ectopic recombination. Cloning ofLr42provides diagnostic markers and over 1000 CIMMYT wheat lines carryingLr42have been developed documenting its widespread use and impact in crop improvement.

     
    more » « less
  4. Abstract

    Genebanks are valuable resources for crop improvement through the acquisition,ex-situconservation and sharing of unique germplasm among plant breeders and geneticists. With over seven million existing accessions and increasing storage demands and costs, genebanks need efficient characterization and curation to make them more accessible and usable and to reduce operating costs, so that the crop improvement community can most effectively leverage this vast resource of untapped novel genetic diversity. However, the sharing and inconsistent documentation of germplasm often results in unintentionally duplicated collections with poor characterization and many identical accessions that can be hard or impossible to identify without passport information and unmatched accession identifiers. Here we demonstrate the use of genotypic information from these accessions using a cost-effective next generation sequencing platform to find and remove duplications. We identify and characterize over 50% duplicated accessions both within and across genebank collections ofAegilops tauschii, an important wild relative of wheat and source of genetic diversity for wheat improvement. We present a pipeline to identify and remove identical accessions within and among genebanks and curate globally unique accessions. We also show how this approach can also be applied to future collection efforts to avoid the accumulation of identical material. When coordinated across global genebanks, this approach will ultimately allow for cost effective and efficient management of germplasm and better stewarding of these valuable resources.

     
    more » « less
  5. Abstract

    Hessian fly (HF;Mayetiola destructorSay) causes severe damage to wheat (Triticum aestivumL.) worldwide. Several resistance genes have been identified in wheat and wild relatives; however, HF populations are under strong selection pressure and evolve rapidly to overcome resistance. To ensure the availability of resistance sources, HF‐resistant germplasm KS18WGRC65 (TA5110, Reg. no. GP‐1042, PI 688251) was developed by Wheat Genetics Resource Center at Kansas State University as a breeding stock that carries resistance geneH26fromAegilops tauschiiCoss. KS18WGRC65 is a cytogenetically stable, homozygous, BC3F3:6line derived from the cross betweenAe. tauschiiaccession KU2147 and hard red winter wheat recurrent parent ‘Overley’. KS18WGRC65 exhibited no penalty for yield or other agronomic characters, making it a suitable source of HF resistance for wheat breeding.

     
    more » « less